UNIT-4
RUNTIME ENVIORNMENT
SOURCE LANGUAGE ISSUES
Procedures:
A procedure definition is a declaration that associates an identifier with a statement. The
identifier is the procedure name, and the statement is the procedure body.

For example, the following is the definition of procedure named readarray :
procedure readarray;
var i : integer;
begin
for i : = 1 to 9 do read(a[i])
end;

When a procedure name appears within an executable statement, the procedure is said to be
called at that point.

Activation trees:
An activation tree is used to depict the way control enters and leaves activations. In an
activation tree,

The Scope of a Declaration:

A declaration is a syntactic construct that associates information with a name.
Declarations may be explicit, such as:
var i : integer ;
or they may be implicit. Example, any variable name starting with I is assumed to denote an
integer.
The portion of the program to which a declaration applies is called the scope of that declaration.

Binding of names:

Even if each name is declared once in a program, the same name may denote different
data objects at run time. “Data object” corresponds to a storage location that holds values.
The term environment refers to a function that maps a name to a storage location.
The term state refers to a function that maps a storage location to the value held there.
[image:]
When an environment associates storage location s with a name x, we say that x is bound
to s. This association is referred to as a binding of x.

STORAGE ORGANISATION
* The executing target program runs in its own logical address space in which each
program value has a location.
* The management and organization of this logical address space is shared between the
complier, operating system and target machine. The operating system maps the logical
address into physical addresses, which are usually spread throughout memory.

[image:]

Run-time storage comes in blocks, where a byte is the smallest unit of addressable
memory. Four bytes form a machine word. Multibyte objects are stored in consecutive
bytes and given the address of first byte.
* The storage layout for data objects is strongly influenced by the addressing constraints of
the target machine.
* A character array of length 10 needs only enough bytes to hold 10 characters, a compiler
may allocate 12 bytes to get alignment, leaving 2 bytes unused.
* This unused space due to alignment considerations is referred to as padding.
* The size of some program objects may be known at run time and may be placed in an
area called static.
* The dynamic areas used to maximize the utilization of space at run time are stack and
heap.
Activation records:
* Procedure calls and returns are usually managed by a run time stack called the control
stack.
* Each live activation has an activation record on the control stack, with the root of the
activation tree at the bottom, the latter activation has its record at the top of the stack.
* The contents of the activation record vary with the language being implemented. The
diagram below shows the contents of activation record.
*
[image:]
Temporary values such as those arising from the evaluation of expressions.
* Local data belonging to the procedure whose activation record this is.
* A saved machine status, with information about the state of the machine just before the
call to procedures.
* An access link may be needed to locate data needed by the called procedure but found
elsewhere.
* A control link pointing to the activation record of the caller.
* Space for the return value of the called functions, if any. Again, not all called procedures
return a value, and if one does, we may prefer to place that value in a register for
efficiency.
* The actual parameters used by the calling procedure. These are not placed in activation
record but rather in registers, when possible, for greater efficiency.
STORAGE ALLOCATION STRATEGIES
The different storage allocation strategies are :
1. Static allocation – lays out storage for all data objects at compile time
2. Stack allocation – manages the run-time storage as a stack.
3. Heap allocation – allocates and deallocates storage as needed at run time from a data area
known as heap.
STATIC ALLOCATION
* In static allocation, names are bound to storage as the program is compiled, so there is no
need for a run-time support package.
* Since the bindings do not change at run-time, everytime a procedure is activated, its
names are bound to the same storage locations.
* Therefore values of local names are retained across activations of a procedure. That is,
when control returns to a procedure the values of the locals are the same as they were
when control left the last time.
* From the type of a name, the compiler decides the amount of storage for the name and
decides where the activation records go. At compile time, we can fill in the addresses at
which the target code can find the data it operates on.
STACK ALLOCATION OF SPACE
* All compilers for languages that use procedures, functions or methods as units of userdefined
actions manage at least part of their run-time memory as a stack.
* Each time a procedure is called , space for its local variables is pushed onto a stack, and
when the procedure terminates, that space is popped off the stack.
Calling sequences:
* Procedures called are implemented in what is called as calling sequence, which consists
of code that allocates an activation record on the stack and enters information into its
fields.
* A return sequence is similar to code to restore the state of machine so the calling
procedure can continue its execution after the call.
* The code in calling sequence is often divided between the calling procedure (caller) and
the procedure it calls (callee).
* When designing calling sequences and the layout of activation records, the following
principles are helpful:
* Values communicated between caller and callee are generally placed at the
beginning of the callee’s activation record, so they are as close as possible to the
caller’s activation record.
* Fixed length items are generally placed in the middle. Such items typically include
the control link, the access link, and the machine status fields.
* Items whose size may not be known early enough are placed at the end of the
activation record. The most common example is dynamically sized array, where the
value of one of the callee’s parameters determines the length of the array.
* We must locate the top-of-stack pointer judiciously. A common approach is to have
it point to the end of fixed-length fields in the activation record. Fixed-length data
can then be accessed by fixed offsets, known to the intermediate-code generator,
relative to the top-of-stack pointer.[image:]
* The calling sequence and its division between caller and callee are as follows.
* The caller evaluates the actual parameters.
* The caller stores a return address and the old value of top_sp into the callee’s
activation record. The caller then increments the top_sp to the respective
positions.
* The callee saves the register values and other status information.
* The callee initializes its local data and begins execution.
* A suitable, corresponding return sequence is:
* The callee places the return value next to the parameters.
* Using the information in the machine-status field, the callee restores top_sp and
other registers, and then branches to the return address that the caller placed in
the status field.
* Although top_sp has been decremented, the caller knows where the return value
is, relative to the current value of top_sp; the caller therefore may use that value.
Variable length data on stack:
* The run-time memory management system must deal frequently with the allocation of
space for objects, the sizes of which are not known at the compile time, but which are
local to a procedure and thus may be allocated on the stack.
* The reason to prefer placing objects on the stack is that we avoid the expense of garbage
collecting their space.
* The same scheme works for objects of any type if they are local to the procedure called
and have a size that depends on the parameters of the call.[image:]
Procedure p has three local arrays, whose sizes cannot be determined at compile time.
The storage for these arrays is not part of the activation record for p.
* Access to the data is through two pointers, top and top-sp. Here the top marks the actual
top of stack; it points the position at which the next activation record will begin.
* The second top-sp is used to find local, fixed-length fields of the top activation record.
* The code to reposition top and top-sp can be generated at compile time, in terms of sizes
that will become known at run time.
HEAP ALLOCATION
Stack allocation strategy cannot be used if either of the following is possible :
1. The values of local names must be retained when an activation ends.
2. A called activation outlives the caller.
* Heap allocation parcels out pieces of contiguous storage, as needed for activation records
or other objects.
* Pieces may be deallocated in any order, so over the time the heap will consist of alternate
areas that are free and in use.
[image:]
The record for an activation of procedure r is retained when the activation ends.
* Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically.
* If the retained activation record for r is deallocated, there will be free space in the heap
between the activation records for s and q.
A compiler uses a symbol table to keep track of scope and binding information about names The symbol table is searched every time a name is encountered in the source text.
Changes to the table occur if a new name or Information about an existing name i s discovered. A compiler uses a symbol table to keep track of scope and binding information about names The symbol table is searched every time a name is encountered in the source text. Changes to the table occur if a new name or Information about an existing name i s discovered. The two symbol-table mechanims presented in this section are linear lists and hash tables.A linear list is the simplest to implement. but its performance is poor. Hashing schemes provide better performance for somewhat greater programming effort and space overhead.
Symbol-Table Entries
Each entry in the symbol table is for the declaration of a name A common representat ion of a name is a pointer to a symbol-table entry for it.If there is a modest upper bound on the length of a name, then the characters in the name can be stored in the symbol-table entry, as in Fig. 7.32(a). If there is no limit On the length of a name, or if the limit is rarely reached, the indirect scheme of Fig. 7.32(b) can be used
Rather than allocating in each symbol-table entry the maximum possible amount of space to hold a lexeme,we can utilize space more efficiently if there is only space for a pointer in a symbol-table entry
[image: C:\Users\admin\Desktop\cd1\1.jpg]
Storage Allocation Information
The List Data Structure for Symbol Tables
The simplest and easiest to implement data structure for a symbol table is a linear list of records We use a single array, or equivalently several arrays. to store names and their associated information [image: C:\Users\admin\Desktop\cd1\2.png][image: C:\Users\admin\Desktop\cd1\5.jpg.png]
The position of the end of the array is marked by the pointer available, pointing to where the next symbol-table entry will go If the symbol table contains n names. the work necessary to insert a new name is constant if we do the insertion without checking to see if the name is already in the table. if multiple entries for names are not allowed.

Hash Tables
Here we consider a rather simple variant knownas open hashing, where “open" refers to the property that there need be no limit on the number of entries that can be made in the table.,
There are two parts of data structure:
data structure: A hashing e consisting of a fixed array of m pointers to table entries.
Table entries organized into m separate linked lists, called buckers {some
buckets may be empty). Each record in the symbol table appears on exactly one of these lists. Storage for the records may be drawn from an5
array of records, as discussed in the next section. Alternatively, the dynamic storage allocation facilities of the implementation language can be used to obtain space for the records, often at some loss of efficiency.
Representing Scope Information
The entries in the symbol table are for declarations of names. When an occurrence of a name in the source text is looked up in the symbol table, the entry for the appropriate declaration of that name must be returned the symbol table for a procedure or scope is the compile time equivalent of an activation record. Information for the non locals of a procedure is found by scanning the symbol tables for the enclosing procedures
following the scope rules of the language We keep track of the local names of a procedure by giving each procedure a unique number. Blocks must alsobe numbered if the language is block-structured.Most closely nested scope rules can be implemented in terms of the
following operations on a name:
Look up : fin d the most recently created entry
insert : make a new entry
delete: remove the most recently created entry
We keep track of the local names of a procedure by giving each procedure a unique number. Blocks must also be numbered if the language is block-structured.
Most closely nested scope rules can be implemented in terms of the following operations on a name:
Look up : fin d the most recently created entry
insert : make a new entry
delete: remove the most recently created entry
We keep track of the local names of a procedure by giving each procedure a unique number. Blocks must also be numbered if the language is block-structured.
LANGUAGE FACILITCES FOR DYNAMIC STORAGE ALLOCATION
facilities provided by some languages forthe dynamic allocation of storage for data, under program control. Storage for such data is usually taken from a heap. Allocated data is often retained until it is explicit1y deallocated.The allocation itself is implicit or explicit.
Garbage Dynamically allocated storage can become unreachable. Storage that a programallocates but cannot refer to is called garbage
Dangling References
An additional complication can arise with explicit deallocation dangling references
can occur.
DYNAMIC STORAGE ALLOCATION TECHNIQUES
The techniques needed to implement dynamic storage allocation depend on how storage is de allocated. If de allocation is implicit, then the run-time support package is responsible for determining when a storage block is no longer needed. There is less a compiler has lo do if de allocation is done explicitly by the programmer.
Explicit Allocation of FixedSized Biocks
The simplest form of dynamic allocation involves blocks OF a fixed size. Bylinking the blocks in a list, as in Fig, 7.41, allocation and de allocation can be done quickly with little or no storage overhead. pointer available points to the first block Allocation consists of taking a block off the list and deallocation consisting of putting the block back on the list.
EXPLICIT Allocation of Variable sized Blocks
When blocks are allocated and de allocated, storage can become fragmented;that is, the heap may consist of alternate blocks that are free and in use block larger than any one of the free blocks, even though the space is available in principle.
One method for allocating variable-sized blocks is called the first-fit method
When a block of size s is allocated, we search for the first free block that is of size for s. This block is then subdivided into a used block of size s,
When a block is de allocated, we check to see if it is next to a free block. If possible, the de allocated block is combined with a free block next to it to create a larger free block
Implicit Deallocation
Implicit de allocation requires cooperation between the user program and the run-time package, because the latter needs to know when a storage block is no longer in use.
The first problem is that of recognizing block boundaries. If the size of blocks is fixed, then position information can be used,
Two approaches can be used for implicit de allocation
Reference counts: We keep track of the number of blocks that point directty to the present block This approach require all the pointers into the heap to be known With variable-size blocks, we have the additional possibility of moving used storage blocks from their current positions This process Called compaction moves all used blocks to one end of the heap. So that all the free storage can be collected into one large free block.

PART-2
INTERMEDIATE CODE GENERATION
The front end translates a source program into an intermediate representation from which the back end generates target code Benefits of using a machine-independent intermediate form are: Retargeting is facilitated. That is, a compiler for a different machine can be created by attaching a back end for the new machine to an existing front end.
[image:]
A machine-independent code optimizer can be applied to the intermediate representation
INTERMEDIATE LANGUAGES
Three ways of intermediate representation:
· Syntax tree
· Postfix notation
· Three address code
The semantic rules for generating three-address code from common programming language constructs are similar to those for constructing syntax trees or for generating postfix notation.
Graphical Representations
A syntax tree depicts the natural hierarchical structure of a source program.
 A dag (Directed Acyclic Graph) gives the same information but in a more compact way because common subexpressions are identified. A syntax tree and dag for the assignment statement a : =b * - c + b * - c are as follows:
[image:]
Postfix notation:
Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of
the tree in which a node appears immediately after its children. The postfix notation for the syntax tree given above is
a b c uminus * b c uminus * + assign
Syntax-directed definition:
Syntax trees for assignment statements are produced by the syntax-directed definition.
Non-terminal S generates an assignment statement.
[image:]
The token id has an attribute place that points to the symbol-table entry for the identifier.
A symbol-table entry can be found from an attribute id.name, representing the lexeme associated with that occurrence of id.
Two representations of the syntax tree are as follows. In (a) each node is represented as a
record with a field for its operator and additional fields for pointers to its children. In (b), nodes are allocated from an array of records and the index or position of the node serves as the pointer to the node
[image:]
Three-Address Code:
Three-address code is a sequence of statements of the general form
x : = y op z
where x, y and z are names, constants, or compiler-generated temporaries; op stands for any operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on booleanvalued data.
Thus a source language expression like x+ y*z might be translated into a sequence
t1 : = y * z
t2 : = x + t1
where t1 and t2 are compiler-generated temporary names.
Advantages of three-address code:
The unraveling of complicated arithmetic expressions and of nested flow-of-control statements makes three-address code desirable for target code generation and optimization. The use of names for the intermediate values computed by a program allows threeaddress code to be easily rearranged – unlike postfix notation.
[image:]
Syntax-Directed Translation into Three-Address Code:
When three-address code is generated, temporary names are made up for the interior
nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary t, followed by the assignment id.place : = t.
1. E.place, the name that will hold the value of E , and
2. E.code, the sequence of three-address statements evaluating E.
[image:]
Implementation of Three-Address Statements:
three-address statement is an abstract form of intermediate code. In a compiler,these statements can be implemented as records with fields for the operator and the operands.
Three such representations are:
Quadruples
Ø Triples
Ø Indirect triples
Quadruples:
Ø A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result.
Ø The op field contains an internal code for the operator. The three-address statement x : =y op z is represented by lacing y in arg1, z in arg2 and x in result.
Ø The contents of fields arg1, arg2 and result are normally pointers to the symbol-table entries for the names represented by these fields. If so, temporary names must be entered into the symbol table as they are created.
Triples:
Ø To avoid entering temporary names into the symbol table, we might refer to a temporary value by the position of the statement that computes it.
Ø If we do so, three-address statements can be represented by records with only three fields: op, arg1 and arg2.
Ø The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table or pointers into the triple structure (for temporary values).
Ø Since three fields are used, this intermediate code format is known as triples.
[image:]
As the sequence of declarations in a procedure or block is examined, we can lay out storage for names local to the procedure. For each local name
we create a symbol-table entry with information like the type and the relative address of the storage for the name
Declarations in a Procedure:
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a
single procedure to be processed as a group. In this case, a global variable, say offset, can keep track of the next available relative address.Before the first declaration is considered, offset is set to 0. As each new name is seen ,that name is entered in the symbol table with offset equal to the current value of offset,and offset is incremented by the width of the data object denoted by that name The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its type type and relative address offset in its data area.
The width of an array is obtained by multiplying the width of each element by the
number of elements in the array. The width of each pointer is assumed to be 4.
[image:]
When a nested procedure is seen, processing of declarations in the enclosing procedure is
temporarily suspended.
One possible implementation of a symbol table is a linked list of entries for names
A new symbol table is created when a procedure declaration D and entries for the declarations in D1 are created in the new table. The new table points back to the symbol table of the enclosing procedure;
[image:][image:]The temporaries used to hold intermediate values in expression calculations tend to clutter up the symbol table, and space has to be allocated to hold their valuesTemporaries can be reused by changing newtemp. The code generated by the rules for E
à E1 + E2 has the general form:
evaluate E1 into t1
evaluate E2 into t2
t : = t1 + t2
[image:]
Addressing Array Elements:
Elements of an array can be accessed quickly if the elements are stored in a block ofconsecutive locations. If the width of each array element is w, then the ith element of array A
begins in location
base + (i – low) x w
where low is the lower bound on the subscript and base is the relative address of the storage allocated for the array The expression can be partially evaluated at compile time if
it is rewritten
i x w + (base – low x w)

image6.png
Position in the
activation tree

Activation records in the heap

Remarks

Retained activation
record for r

image7.png
NAME

ATTRIBUTES

(2) In fixed-size space

within a record

ATTRIBUTES

T ol T iR a Bosx e lardlal

T

(b) tn a scparatc array

image8.png
avilatte ——]

Fig. 7.33. A tinear it of records

image9.png
Array of list headers.

indexcd by hsh value

o

2,

1o

<

maten

List lements created
for names shown

EaEEE_NEN

aceson

Fig. 734, A hash table of size 211

image10.png
Position of intermediate code generator

static

>{ parser

%

checker

#

intermediate
code generator

intermediate

code

code

#

generator

image11.png
() Dag

(a) Syntax tree

image12.png
PRODUCTION

SEMANTIC RULE

S>id:=E
EJE+E
ESE*E
ES>-E
E>(E1)
ES>id

S.nptr : = mknode(‘assign’,mkleaf(id, id.place), Enptr)

E.nptr : = mknode(*+’, Ey.nptr, Ey.nptr)

E.nptr : = mknode(**’, Ey.nptr, Ex.niptr)
E.nptr : = mknode(‘uminus’, Ey.nptr)
E.nptr : = Ey.nptr

E.nptr : = mkleaf(id. id place)|

image13.png
Two representations of the syntax tree

assign 1 1 o id b
——
- 1| id | o«
id a 1
! 2| uminus | 1
2
T T 3 * 0
+
Il Il
4 id b
e
F— 5| id c
Ll | -
i | 6| uminus | 5
id b) A 4
|
uminus: 1 uminus 1 8|+ 3
v v .
id a
id }c id } c °
10| assign | 9

image14.png
Three-address code corresponding to the syntax tree and dag given above

-

b*h

a:i=ts

(a) Code for the syntax tree (b) Code for the dag

image15.png
Syntax-directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES
S Pid:=E S.code : = E.code || genf(id.place “=" E.place)
EDE+E; E.place = newtemp;

E.code := Ey.code | Excode || gen(E.place = Ey.place “+’ Explace)
E DE *E; E.place = newtemp;

E.code := Ey.code || Excode || gen(E.place =" E.place “** Eplace)
E>-E E.place = newtemp;

Ey.code || gen(E.place =" ‘uminus’ Ey.place)

E 2(E1)

E 2id

image16.png
op argl | arg2 | result op argl | arg2
(©0) | uminus ¢ 4 (0) |uminus | <
| * bl | o | * b ©
@) | uminus ¢ t @ |uminus | <
@ * bl 6| t G|+ b @
@ | + | ot | ot @ | + (¢} ®)
®) - t a) | assign a @

image17.png
Computing the types and relative addresses of declared names

P 3D {offset:=0}

D>D;D

DPid:T { enter(id.name, T.type, offset);
httpy//notes prr-insignis.org/| = offset + T.width }

T B integer

T > real

T Barray [num] of Tt

T3%T; { Ttype : = pointer (Tr.iype);
Twidth : =4}

image18.png
Symbol tables for nested procedures

sort

nil | header

x

readarray | T to readarray

exchange | ——" to exchange

quicksort | —{—— —l
readarray exchange quicksort
header header header
i k

v
partition

7y

partition

header

image19.png
Translation scheme to produce three-address code for assignments

S>id:=E {p : =lookup (id.name);
if p#nil then
emit(p ¢ : =" E.place)
else error }
ES>E+E {E.place : = newtemp:

emit(E.place : =" Epplace * + < Explace) }

ESE*E { Eplace : = newtemps
emit(E.place - = Eyplace < * * Explace) }

ED>-E { E.place : = newtemp;
emit (Eplace =" ‘uminus’ E; place) }

E(E) {Eplace : = Epplace }

image20.png
Three-address code with stack temporaries
statement value of ¢

0

hitp://notes pmr-insignia.org/
rs

© ==

image1.png
environment

state

image2.png
Typical subdivision of run-time memory:

Code

Static Data

Stack

v

free memory

R

Heap

image3.png
— B

P Control fnk. —
© Accessfinks.]
N 53V machine states. —
— s —

— B

image4.png
AEEiiVE IS RS IRpTRATalaba puaiies.

—

caller’s
activation
record

caller's
% responsibility

callee’s

callee’s
responsibylity

Parameters and returned values

control link
links and saved status.

temporaries and local data

Parameters and returned values

control link
links and saved status

top_sp

temporaries and local data

Division of tasks between caller and callee

image5.png
activation
record for p

arrays of p

1

activation record for
procedure q called by p

arrays of q

2

top

